ab241016 6-Phosphogluconate Dehydrogenase Assay Kit

For the detection of 6-PGD in tissue homogenates and adherent/suspension cells.

This product is for research use only and is not intended for diagnostic use.

Table of Contents

1.	Overview	1
2.	Protocol Summary	2
3.	General guidelines, precautions, and troubleshooting	3
4.	Materials Supplied, and Storage and Stability	4
5.	Materials Required, Not Supplied	5
6.	Reagent Preparation	6
7.	Standard Preparation	7
8.	Sample Preparation	8
9.	Assay Procedure	9
10.	Data Analysis	10
11.	Typical Data	11
13.	Notes	13

1. Overview

6-Phosphogluconate Dehydrogenase Assay Kit (ab241016) provides a quick, sensitive and easy way for measuring 6-PGD activity in various biological samples.

In this assay, 6-PGD converts 6-phosphogluconate into an intermediate, generating NADPH, which subsequently reduces a colorless probe into a strongly colored product detectable by absorbance at 460 nm.

The assay is high-throughput adaptable and can detect less than 0.05 mU of 6-PGD activity.

2. Protocol Summary

Prepare tissue or cell samples and background/positive controls.

Prepare standard curve.

Prepare Reaction Mix and add to standards, positive control and sample wells.

Measure absorbance immediately at 460 nm in kinetic mode for 45-60 min at 37°C.

3. General guidelines, precautions, and troubleshooting

- Please observe safe laboratory practice and consult the safety datasheet.
- For general guidelines, precautions, limitations on the use of our assay kits and general assay troubleshooting tips, particularly for first time users, please consult our guide: www.abcam.com/assaykitguidelines
- For typical data produced using the assay, please see the assay kit datasheet on our website.

4. Materials Supplied, and Storage and Stability

- Store kit at -20°C in the dark immediately upon receipt and check below in Section 6 for storage for individual components.
 Kit can be stored for 1 year from receipt, if components have not been reconstituted.
- Aliquot components in working volumes before storing at the recommended temperature.

Item	Quantity	Storage conditio n
Assay Buffer 5	25 mL	-20°C
6-PGD Substrate	1 vial	-20°C
NADP Detection Probe	1 vial	-20°C
NADPH Standard	1 vial	-20°C
6-PGD Positive Control	1 vial	-20°C

PLEASE NOTE: Assay Buffer 5 was previously labelled as Assay Buffer V and 6-PGD Assay Buffer, and NADP Detection Probe as 6-PGD Developer. The composition has not changed.

5. Materials Required, Not Supplied

These materials are not included in the kit, but will be required to successfully perform this assay:

- 96-well clear plate with flat bottom
- Multi-well spectrophotometer

6. Reagent Preparation

- Before using the kit, spin tubes and bring down all components to the bottom of tubes.
- Prepare only as much reagent as is needed on the day of the experiment.

6.1 Assay Buffer 5:

Warm to room temperature before use. Store at either 4°C or -20°C .

6.2 6-PGD Substrate:

Reconstitute with 220 μ L dH₂O. Aliquot and store at -20°C. Keep on ice while in use. Use within two months.

6.3 NADP Detection Probe:

Reconstitute with 900 μ L dH₂O. Gently pipette up and down to dissolve the pellet completely (do not vortex). Aliquot and store at -20°C. Keep on ice while in use. Use within two months.

6.4 NADPH Standard:

Reconstitute with 200 μ L dH₂O to generate 1 mM NADPH Standard solution. Aliquot and store at –20°C. Keep on ice while in use. Use within two months.

6.5 6-PGD Positive Control:

Reconstitute with 20 μ L Assay Buffer 5 and mix thoroughly. Aliquot and store at –20°C. Use within two months. Keep on ice while in use.

7. Standard Preparation

- Always prepare a fresh set of standards for every use.
- 7.1 Add 0, 2, 4, 6, 8 and 10 μ L of 1 mM NADPH Standard into a series of wells in 96 well clear plate to generate 0, 2, 4, 6, 8 and 10 nmol/well of NADPH Standard.
- 7.2 Adjust the volume to 50 µL/well with Assay Buffer 5.

Standar d#	1 mM NADPH Standard (μL)	Assay Buffer 5 (µL)	NADPH Standard nmol/well
1	0	50	0
2	2	48	2
3	4	46	4
4	6	44	6
5	8	42	8
6	10	40	10

8. Sample Preparation

- 8.1 Rapidly homogenize tissue (10 mg) or cells (1 x 10^6) with 100 µL ice-cold Assay Buffer 5, and keep on ice for 10 min.
- 8.2 Centrifuge at $10,000 \times g$ for 20 mins and transfer the supernatant to a fresh tube.
- 8.3 Add 5-50 μ L sample per well in a clear 96 well plate and adjust the volume to 50 μ L with Assay Buffer 5.
- 8.4 For the 6-PGD positive control, dilute the required amount 10 times with assay buffer, add 2 µL of the diluted 6-PGD Positive Control per well into the desired well(s) and adjust the final volume to 50 µL with Assay Buffer 5.

Δ Note:

- For unknown samples, we suggest testing several doses to ensure the readings are within the Standard Curve range.
- Residual NADPH in samples will generate a background. This background can be corrected for by making a background control mix (omitting the 6-PGD substrate in the reaction) and running a parallel sample background control.

9. Assay Procedure

9.1 Mix enough reagents for the number of assays to be performed. For each well, prepare 50 μ L Reaction Mix containing:

	Reaction Mix (µL)	Background Control Mix (µL)
Assay Buffer 5	40	42
NADP Detection Probe	8	8
6-PGD Substrate	2	

- 9.2 Mix and add 50 µL of the Reaction Mix to each well containing the Standard, Positive Control and test samples.
- 9.3 For background correction, add 50 µL of Background Control Mix (without substrate) to sample background control well(s) and mix well.
- **9.4** Measure absorbance immediately at 460 nm in kinetic mode for 45-60 min at 37°C.
- 9.5 Measurement time for the linear phase of the reaction depends on the 6-PGD activity in samples. We recommend measuring the absorbance in kinetic mode and choosing two time points (†1 and †2) in the linear range to calculate the 6-PGD activity of the samples. The NADPH Standard Curve can be read in endpoint mode (i.e. at the end of the incubation time).

10. Data Analysis

- **10.1** Subtract the 0 nmol Standard reading from all Standard Curve readings.
- 10.2 Plot the NADPH Standard Curve.
- 10.3 If sample background control reading is significant, subtract the background control reading from its paired sample reading.
- 10.4 Calculate $\Delta OD_{460} = A_2 A_1$ from the linear phase of the test sample reaction.
- 10.5 Apply the Δ OD value to the NADPH Standard Curve to get B nmol of NADPH generated during the reaction time (Δ T = t_2 t_1).

Sample 6-PGD Activity = $B/(\Delta t \times V) \times D = nmol/min/ml = mU/ml$

Where:

B is the NADPH amount from Standard Curve (nmol).

 Δt is the reaction time (min).

V is the sample volume added into the reaction well (mL)

D is the sample dilution factor

Unit Definition: One unit of 6-phosphogluconate dehydrogenase is the amount of enzyme that generates 1.0 μ mole of NADPH per min at pH 8.0 at 37°C.

11. Typical Data

Typical data provided for demonstration purposes only.

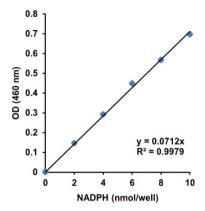
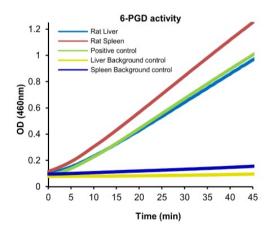
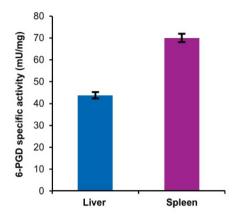




Figure 1. NADPH Standard Curve.

Figure 2. Reaction kinetics of 6-Phosphogluconate dehydrogenase activity in positive control, rat liver (66 µg protein) and rat spleen (56 µg protein) using appropriate background controls.

Figure 3. 6-Phosphogluconate dehydrogenase specific activity calculated in rat liver and spleen tissue lysates.

13. Notes

Technical Support

Copyright © 2025 Abcam. All Rights Reserved. The Abcam logo is a registered trademark. All information / detail is correct at time of going to print.

For all technical or commercial enquiries please go to: www.abcam.com/contactus

www.abcam.cn/contactus (China)

www.abcam.co.jp/contactus (Japan)