AB314846 – Human \$100B SimpleStep ELISA® Kit – Extracellular

For the quantitative measurement of \$100B in human serum, milk, and CSF.
For research use only - not intended for diagnostic use.

For overview, typical data and additional information please visit: www.abcam.com/AB314846

Storage and Stability: Store kit at 2-8°C immediately upon receipt. Refer to list of materials supplied for storage conditions of individual components. Observe the storage conditions for individual prepared components in the Standard Preparation and Reagent preparation sections.

Materials Supplied

Item	Quantity	Storage Condition
Human \$100B Capture Antibody 10X	600 μL	+4°C
Human \$100B Detector Antibody 10X	600 μL	+4°C
Human \$100B Lyophilized Recombinant Protein	2 Vials	+4°C
Antibody Diluent BAI	6 mL	+4°C
Sample Diluent LS	50 mL	+4°C
Wash Buffer PT 10X	20 mL	+4°C
TMB Development Solution	12 mL	+4°C
Stop Solution	12 mL	+4°C
SimpleStep Pre-Coated 96-Well Microplate	96 wells	+4°C
Plate Seal	1	+4°C

Materials Required, Not Supplied

These materials are not included in the kit, but will be required to successfully utilize this assay:

Microplate reader capable of measuring absorbance at 450 or 600 nm.

Deionized water.

Multi- and single-channel pipettes.

Tubes for standard dilution.

Plate shaker for all incubation steps.

Optional: Phenylmethylsulfonyl Fluoride (PMSF) (or other protease inhibitors).

Reagent Preparation

Equilibrate all reagents to room temperature (18-25°C) prior to use. The kit contains enough reagents for 96 wells. The sample volumes below are sufficient for 48 wells (6 x 8-well strips); adjust volumes as needed for the number of strips in your experiment.

Prepare only as much reagent as is needed on the day of the experiment. Capture and Detector Antibodies have only been tested for stability in the provided 10X formulations

1X Wash Buffer PT: Prepare 1X Wash Buffer PT by diluting Wash Buffer PT 10X with deionized water. To make 50 mL 1X Wash Buffer PT combine 5 mL Wash Buffer PT 10X with 45 mL deionized water. Mix thoroughly and gently.

Antibody Cocktail: Prepare Antibody Cocktail by diluting the capture and detector antibodies in Antibody Diluent BAI. To make 3 mL of the Antibody Cocktail combine 300 μ L 10X Capture Antibody and 300 μ L 10X Detector Antibody with 2.4 mL Antibody Diluent BAI. Mix thoroughly and gently.

Standard Preparation

Always prepare a fresh set of standards for every use. Discard working standard dilutions after use as they do not store well. The following section describes the preparation of a standard curve for duplicate measurements (recommended).

- Reconstitute the \$100B standard sample by adding the volume of Sample Diluent LS indicated on the protein vial label. Hold at room temperature for 10 minutes. Mix thoroughly and gently. This is the 12,800 pg/mL Stock Standard Solution.
- 2. Label eight tubes, Standards 1–8.
- 3. Add 375 µL of Sample Diluent LS into tube number 1 and 150 µL of Sample Diluent LS into numbers 2-8.
- Use the Stock Standard to prepare the following dilution series. Standard #8 contains no protein and is the Blank control:

Standard #	Dilution Sample	Volume to Dilute (µL)	Volume of Diluent (µL)	Starting Conc. (pg/mL)	Final Conc. (pg/mL)
1	Stock Standard	25	375	12,800	800
2	Standard#1	150	150	800	400
3	Standard#2	150	150	400	200
4	Standard#3	150	150	200	100
5	Standard#4	150	150	100	50
6	Standard#5	150	150	50	25
7	Standard#6	150	150	25	12.5
8	Blank Control	0	150	N/A	N/A

Sample Preparation

Typical Sample Dynamic Range		
Sample Type Range		
Serum	≤ 50%	
Milk	0.63 - 10%	
Cerebrospinal Fluid	1.56 – 25%	

Serum Samples should be collected into a serum separator tube. After clot formation, centrifuge samples at 2,000 x g for 10 minutes and collect serum. Dilute samples at least 1:2 into Sample Diluent LS and assay. Store un-diluted serum at -20° C or below. Avoid repeated freeze-thaw cycles.

Milk De-fat milk samples as follows. Centrifuge milk samples at $500 \times g$ for 15 minutes at 4° C and collect the aqueous fraction using syringe attached to needle. Centrifuge the aqueous fraction at $3,000 \times g$ for 15 minutes at 4° C and collect the final aqueous fraction (de-fatted milk) using syringe attached to needle. Dilute the de-fatted milk samples at least 1:10 into Sample Diluent LS and assay. Store un-diluted de-fatted milk at -20° C or below. Avoid repeated freeze-thaw cycles.

Cerebrospinal Fluid (CSF) Dilute cerebrospinal fluid at least 1:4 into Sample Diluent LS and assay. Store un-diluted samples at -20°C or below. Avoid repeated freeze-thaw cycles.

Plate Preparation

The 96 well plate strips included with this kit are supplied ready to use. It is not necessary to rinse the plate prior to adding reagents.

Unused plate strips should be immediately returned to the foil pouch containing the desiccant pack, resealed and stored at 4° C.

For each assay performed, a minimum of two wells must be used as the zero control.

For statistical reasons, we recommend each sample should be assayed with a minimum of two replicates (duplicates).

Differences in well absorbance or "edge effects" have not been observed with this assay.

Assay Procedure

Equilibrate all materials and prepared reagents to room temperature prior to use. We recommend that you assay all standards, controls and samples in duplicate

- 1. Prepare all reagents, working standards, and samples as directed in the previous sections.
- 2. Remove excess microplate strips from the plate frame, return them to the foil pouch containing the desiccant pack, reseal and return to 4°C storage.
- 3. Add 50 µL of all sample or standard to appropriate wells.
- 4. Add 50 µL of the Antibody Cocktail to each well.
- 5. Seal the plate and incubate for 1 hour at room temperature on a plate shaker set to 400 rpm.
- 6. Wash each well with 3 x 350 µL 1X Wash Buffer PT. Wash by aspirating or decanting from wells then dispensing 350 µL 1X Wash Buffer PT into each well. Wash Buffer PT should remain in wells for at least 10 seconds. Complete removal of liquid at each step is essential for good performance. After the last wash invert the plate and tap gently against clean paper towels to remove excess liquid.
- 7. Add $100 \, \mu L$ of TMB Development Solution to each well and incubate for $10 \, \text{minutes}$ in the dark on a plate shaker set to $400 \, \text{rpm}$.
 - Given variability in laboratory environmental conditions, optimal incubation time may vary between 5 and 20 minutes.
 - Note: The addition of Stop Solution will change the color from blue to yellow and enhance the signal intensity about 3X. To avoid signal saturation, proceed to the next step before the high concentration of the standard reaches a blue color of O.D.600 equal to 1.0.
- 8. Add 100 µL of Stop Solution to each well. Shake plate on a plate shaker for 1 minute to mix. Record the OD at 450 nm. This is an endpoint reading.
- 9. Alternative to 8: Instead of the endpoint reading at 450 nm, record the development of TMB Substrate kinetically. Immediately after addition of TMB Development Solution begin recording the blue color development with elapsed time in the microplate reader prepared with the following settings:

0 0		
Mode	Kinetic	
Wavelength:	600 nm	
Time:	up to 20 min	
Interval:	20 sec - 1 min	
Shaking:	Shake between readings	

Note that an endpoint reading can also be recorded at the completion of the kinetic read by adding 100 µL Stop Solution to each well and recording the OD at 450 nm.

Download our ELISA guide for technical hints, results, calculation, and troubleshooting tips: www.abcam.com/protocols/the-complete-elisa-guide

For technical support contact information, visit: www.abcam.com/contactus

Copyright © 2023 Abcam, All Rights Reserved. All information / detail is correct at time of going to print. Version 1 \mid 2023-09-27

AB314846 – Human \$100B SimpleStep ELISA® Kit – Extracellular Additional information

ASSAY SPECIFICITY

This kit is designed for the quantification of human \$100B.

The standard protein in this kit is full length human \$100B.

Native signal was detected in milk and CSF.

Spiked protein experiments were used to validate serum.

Plasma (heparin), plasma (citrate), cell culture supernatant, saliva, urine, cell extract, and tissue extract samples have not been tested with this kit.

This kit is incompatible with plasma (EDTA) samples.

For the measurement of human \$100B in tissue extract sample types, use \$100B ELISA Kit ab234573.

INTERFERENCE

50 ng/mL of human \$100A1, 50 ng/mL of human \$100A8/A9, 50 ng/mL of human \$100 A12 and 50 ng/mL of human RAGE were tested for interference with 400 pg/mL of recombinant human \$100B. No interference was observed.

CALCULATION

- Calculate the average absorbance value for the blank control (zero) standards. Subtract
 the average blank control standard absorbance value from all other absorbance values.
- Create a standard curve by plotting the average blank control subtracted absorbance value for each standard concentration (y-axis) against the target protein concentration (x-axis) of the standard. Use graphing software to draw the best smooth curve through these points to construct the standard curve.
 - Δ Note: Most microplate reader software or graphing software will plot these values and fit a curve to the data. A four parameter curve fit (4PL) is often the best choice; however, other algorithms (e.g. linear, semi-log, log/log, 4 parameter logistic) can also be tested to determine if it provides a better curve fit to the standard values.
- Determine the concentration of the target protein in the sample by interpolating the blank control subtracted absorbance values against the standard curve. Multiply the resulting value by the appropriate sample dilution factor, if used, to obtain the concentration of target protein in the sample.
- Samples generating absorbance values greater than that of the highest standard should be further diluted and reanalyzed. Similarly, samples which measure at an absorbance values less than that of the lowest standard should be refested in a less dilute form.

TYPICAL DATA

Typical standard curve – data provided for demonstration purposes only. A new standard curve must be generated for each assay performed

Standard Curve Measurements			
Concentration (pg/mL)	O.D 450 nm		Mean
	1	2	O.D
0	0.055	0.055	0.055
12.5	0.115	0.112	0.113
25	0.164	0.168	0.166
50	0.250	0.259	0.254
100	0.460	0.441	0.451
200	0.820	0.860	0.840
400	1.549	1.579	1.564
800	3.004	2.973	2.988

Table 1. Example of human \$100B standard curve in Sample Diluent LS. The \$100B standard curve was prepared as described in the Standard Preparation section. The table shows raw data values.

TYPICAL SAMPLE VALUES

Sensitivity:

The calculated minimal detectable dose (MDD) is 1.5 pg/mL. The MDD was determined by calculating the mean of zero standard replicates (n=24) and adding 2 standard deviations then extrapolating the corresponding concentration.

Recovery

Three concentrations of \$100B were spiked in duplicate to the indicated biological matrix to evaluate signal recovery in the working range of the assay.

Sample Type	Average % Recovery	Range (%)
25% Serum	85	76 - 91
2.5% Milk	90	87 - 95
5% Cerebrospinal Fluid	107	98 - 114

Linearity of Dilution

Linearity of dilution is determined based on interpolated values from the standard curve. Linearity of dilution defines a sample concentration interval in which interpolated target concentrations are directly proportional to sample dilution.

Native \$100B was measured in the following biological samples in a 2-fold dilution series. Sample dilutions are made in Sample Diluent LS.

Dilution Factor	Interpolated value	10% Human Milk	25% Human CSF
Undiluted	pg/mL	490.5	251.6
unaliulea	% Expected value	100	100
2	pg/mL	254.6	131.2
2	% Expected value	104	104
4	pg/mL	146.7	66.5
4	% Expected value	120	106
8	pg/mL	65.0	32.6
0	% Expected value	106	104
16	pg/mL	36.6	16.8
10	% Expected value	120	107

Recombinant \$100B was spiked in in the following biological samples in a 2-fold dilution series. Sample dilutions are made in Sample Diluent LS.

Dilution Factor	Interpolated value	50% Human Serum
Undiluted	pg/mL	
unaliulea	% Expected value	100
2	pg/mL	210.3
2	% Expected value	111
4	pg/mL	107.6
	% Expected value	113
8	pg/mL	54.5
0	% Expected value	115
1.4	pg/mL	28.4
16	% Expected value	120

Precision

Mean coefficient of variations of interpolated values of \$100B from three concentrations of human milk within the working range of the assay.

	Intra-assay	Inter-assay
N=	8	3
CV (%)	8.0	5.2

Download our ELISA guide for technical hints, results, calculation, and troubleshooting tips:

www.abcam.com/protocols/the-complete-elisa-guide

For technical support contact information, visit: www.abcam.com/contactus

Copyright © 2023 Abcam, All Rights Reserved. All information / detail is correct at time of going to print. Version 1 \mid 2023-09-27