ab324120 - Nitroreductase Assay Kit (Luminometric)

A highly sensitive and convenient method to quantify Nitroreductase (NTR) activity. For research use only - not intended for diagnostic use.

For overview, typical data and additional information please visit: www.abcam.com/ab324120

Storage and Stability: Store kit at -20°C in the dark immediately upon receipt. Refer to list of materials supplied for storage conditions of individual components.

Materials Supplied

Item	Quantity	Storage Condition
NTR Substrate	1 vial	-20°C (Store in the dark)
NTR Reaction Buffer	25 mL	-20°C
NTR Reaction Enzyme	1 vial	-20°C
NTR Detection Buffer	5 mL	-20°C
NTR Detection Mix 1	1 vial	-20°C
NTR Detection Mix 2	1 vial	-20°C
Nitroreductase Standard	1 vial	-20°C
DMSO	100 µL	-20°C

Materials Required, Not Supplied

These materials are not included in the kit, but will be required to successfully utilize this assay:

- Luminescence microplate reader
- Solid white plates
- ddH₂O

Protocol Summary

- 1. Prepare NTR Substrate stock solution.
- 2. Add NTR standards or NTR test samples (50 µL/well).
- 3. Add NTR Reaction working solution (50 µL/well).
- 4. Incubate for 60 minutes at 37 °C.
- 5. Prepare NTR Detection working solution.
- 6. Add NTR Detection working solution (50 µL/well).
- 7. Monitor luminescence intensity increase immediately.

IMPORTANT: Thaw all kit components at room temperature before starting the experiment.

Preparation of Stock Solutions

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles.

NTR substrate stock solution (100X)

1. Add 50 μ L of DMSO into the vial of NTR Substrate to make 100X NTR substrate stock solution. **Note**: Keep away from light.

NTR Reaction Enzyme stock solution (100X)

 Add 50 µL of NTR Reaction Buffer into the vial of NTR Reaction Enzyme to make 100X NTR Reaction Enzyme stock solution.

Note: Keep away from light.

NTR Detection Mix 1 stock solution (100X)

 Add 50 µL of NTR Detection Buffer into the vial of NTR Detection Mix 1 to make 100X NTR Detection Mix 1 stock solution.

Note: Keep away from light.

Nitroreductase Standard solution (250 µg/mL)

 Add 20 μL of ddH₂O into the vial of Nitroreductase Standard to make 250 μg/mL Nitroreductase Standard solution.

Preparation of Standard Solution

Nitroreductase Standard solution

 Add 10 μL of 250 μg/mL Nitroreductase Standard solution to 240 μL of NTR Reaction Buffer to generate 10 μg/mL Nitroreductase standard solution (NS7). Then take 10 μg/mL Nitroreductase standard solution (NS7) and perform 1:3 serial dilutions in NTR Reaction Buffer to get serially diluted Nitroreductase standards (NS2 - NS7).

Note: Diluted NTR standard solution is unstable and should be used within 4 hours.

Preparation of Working Solutions

NTR Reaction working solution

 Add 50 µL of 100X NTR substrate stock and 50 µL of 100X NTR reaction enzyme stock solutions into 5 mL of NTR Reaction Buffer to make a total volume of 5.1 mL NTR Reaction working solution.

Note: Keep away from light.

NTR Detection working solution

1. Add 50 µL of 100X Detection Mix 1 and 10 µL of Detection Mix 2 into 5 mL of NTR Detection Buffer to make a total volume of 5.06 mL NTR Detection working solution.

Note: Keep away from light.

Experimental Protocol

BL	BL	TS	TS	
NS1	NS1			
NS2	NS2			
NS3	NS3			
NS4	NS4			
NS5	NS5			
NS6	NS6			
NS7	NS7			

Table 1. Layout of NTR standards and test samples in a solid white 96-well microplate. NS=NTR standards (NS7-NS1, 0.001 to 10 µg/mL); BL=Blank Control; TS=Test Samples.

Well	Volume	Reagent
NS1-NS7	50 µL	Serial Dilution (10 to 0.001 µg/mL)
BL	50 μL	NTR Reaction Buffer
TS	50 μL	Test Sample

Table 2. Reagent composition for each well of a 96-well microplate.

1. Prepare NTR standards (NS), blank controls (BL), and test samples (TS) according to the layout provided in Tables 1 and 2. For a 384-well plate, use 12.5 μ L of reagent per well instead of 50 μ L.

Note: Treat cells or tissue samples as desired.

- Add 50 μL of NTR Reaction working solution to each well of NTR standard, blank control, and test samples. For a 384-well plate, add 12.5 μL of NTR Reaction working solution into each well instead.
- 3. Incubate the reaction for 60 minutes at 37 °C, protected from light.
- 4. Add 50 μ L of NTR Detection working solution to each well to make the total assay volume 150 μ L/well. For a 384-well plate, add 12.5 μ L of Detection working solution into each well instead, for a total volume of 37.5 μ L/well.
- 5. Monitor the luminescence increase immediately with a luminescence microplate reader.

For technical support contact information, visit: www.abcam.com/contactus

Copyright © 2025 Abcam, All Rights Reserved. All information / detail is correct at time of going to print. Version 1 \mid 2025-05-06